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Outline

• Forward Ion Acceleration
• Ion acceleration in reflecting geometry
• Simulations with pre-ionized plasma
• Simulations including ionization
• Conclusions
• References
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Introduction
• Ion acceleration via laser-matter interaction is an attractive 

mechanism for several potential applications, e.g.:
– compact size accelerators
– diagnostic sources

• Common setup: 
– ultra-intense, ultra-short laser pulse hits over- or underdense foil target
– Electrons ponderomotively accelerated and heated
– Ions accelerated forward (same direction as initial laser pulse)

• Several mechanisms can be responsible for ion acceleration:
– Sheath normal acceleration
– Shock acceleration
– Coulomb explosion
– Adiabatic expansion

• For some applications, acceleration in backward direction is 
preferable!

• Investigation of different setups for reverse acceleration
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Example of Laser-Matter Interaction
Laser pulse propagation
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• Interaction of 100 fs laser-pulse with over-
dense foil target propagating left to right

• During laser pulse (100 fs):
– Electrons accelerated into foil via ExB
– Overshooting at foil backside
– Electron recirculation

• ⇒ Electrostatic fields at front and back of foil
• ⇒ Ions get accelerated in forward direction



5
Approved for public release, distribution unlimited.

Laser-Matter Interaction (Cont.)
Laser pulse propagation
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Io
ns QUESTION:

Is there a way to accelerate 
ions only in one direction?

• After laser pulse (≈ 2ps):
• Electrons thermalize
• Ions continue to be accelerated

– Sheath normal acceleration at back 
and front

– Shock acceleration (if shock forms)
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• Overdense, high-Z target
– Laser pulse gets reflected
– High-Z: electrons see strong potential

• Underdense, low-Z coating
– Laser propagates through film

• Ionizes the film
• Accelerates some electrons

– Second pass through film
• More ionization
• Accelerates more electrons and esp. ions, but now in backward 

direction

Two-Component Material

Low-Z

High-Z

Laser

Ions
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VORPAL
• Plasma simulation code/framework

– PIC, Fluid, hybrid model
• Original design: Wakefield acceleration
• Nieter & Cary, J.Comp. Phys., 196(2), 448, 2004

• Multi-Dimensional (N=1,2,3)
• Fully parallel 

– Scaling for > 4000 PEs 
– Flexible domain decomp
– Dynamic load balancing
– C++

• Output format: HDF5
• Postprocessing/Viz: 

– IDL, OpenDX, GnuPlot 

http://www-beams.colorado.edu/vorpal/
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VORPAL Features
• Full EM PIC model

– Moving window
• Variety of particle sources, emitters

– Space Charge limited
– Fowler-Nordheim

• Parallel ES solver
– Based on Aztec (Sandia)
– Variety of solvers, preconditioners

• DSMC
– Being implemented

• Ionization
– Field ionization 
– Impact ionization under development

• Direct Coulomb interaction
– Hermite integrator
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Some Applications of VORPAL

• Wakefield acceleration 
• Electron cooling for RHIC 
• High-power microwave breakdown
• Photonic bandgap structures

• Debris propagation in IFE 
chambers

• Dusty plasmas
• Gamma-ray bursts 
• Magnetic reconnection
• Laser-Overdense interaction

Time evolution of the ion density in a 2D VORPAL 
simulation, including debris ions, debris electrons, 
background ions and background electrons. 
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Pseudo 2D simulations

Longitudinal ion phase space of 
an infinitely thick Al4+ target 
(gray) coated with a 30 mm thick  
He2+ layer (black) after being hit 
by a 50fs laser pulse. The 
coating ions are accelerated in 
reverse direction.

Al4+

He2+

Backward accelerated ions
Mechanism works!

What about ionization? Peak intensity? ….



11
Approved for public release, distribution unlimited.

Ionization within coating

• Acceleration in backward direction if 
ionization happens only after reflection 
off the target 

• Shape target as focusing mirror 
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Setup
Low-Z coating, underdense High-Z target, overdense

Laser pulse, focused at target

Forward accelerated electrons 
face strong potentialBackward accelerated electrons

-> sheath normal acceleration of ions
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Coated mirror (incl. ionization)

Perfect Mirror

Neutral He

Ionized He

Neutral He contours
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Coated mirror (incl. ionization)

He

He+

He++

He Ions contours
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Backward Ion acceleration ?
He++ Position He++ Energy 

t=3.7fs 

t=7.2fs 

YES! 
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Summary
• Presented simulations of laser-matter interaction

– Different model for matter: pre-ionized, including ionization
– Different geometries: plane parallel coating, focusing mirror

• Ion acceleration in reverse direction has been 
observed

• Future work:
– More parameter studies to optimize process: coating 

thickness, Z-ratio, laser focus, mirror geometry
– Dynamic focusing (pre-pulse creating “mirror”)

This work was supported by OSD SBIR Phase II Contract XXXXX and Tech-X Corporation
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